87 research outputs found

    Evolution of Test Programs Exploiting a FSM Processor Model

    Get PDF
    Microprocessor testing is becoming a challenging task, due to the increasing complexity of modern architectures. Nowadays, most architectures are tackled with a combination of scan chains and Software-Based Self-Test (SBST) methodologies. Among SBST techniques, evolutionary feedback-based ones prove effective in microprocessor testing: their main disadvantage, however, is the considerable time required to generate suitable test programs. A novel evolutionary-based approach, able to appreciably reduce the generation time, is presented. The proposed method exploits a high-level representation of the architecture under test and a dynamically built Finite State Machine (FSM) model to assess fault coverage without resorting to time-expensive simulations on low-level models. Experimental results, performed on an OpenRISC processor, show that the resulting test obtains a nearly complete fault coverage against the targeted fault mode

    Approximations to the Normal Distribution Function and An Extended Table for the Mean Range of the Normal Variables

    Get PDF
    This article presents a formula and a series for approx¬imating the normal distribution function. Over the whole range of the normal variable z, the proposed formula has the greatest absolute error less than 6.5e - 09, and series has a very high accuracy. We examine the accuracy of our proposed formula and series for various values of z’s. In the sense of accuracy, our formula and series are su¬perior to other formulae and series available in the literature. Based on the proposed formula an extended table for the mean range of the normal variables is established

    Approximations to the Normal Distribution Function and An Extended Table for the Mean Range of the Normal Variables

    Get PDF
    This article presents a formula and a series for approx¬imating the normal distribution function. Over the whole range of the normal variable z, the proposed formula has the greatest absolute error less than 6.5e - 09, and series has a very high accuracy. We examine the accuracy of our proposed formula and series for various values of z’s. In the sense of accuracy, our formula and series are su¬perior to other formulae and series available in the literature. Based on the proposed formula an extended table for the mean range of the normal variables is established

    Between session reliability of heel-to-toe progression measurements in the stance phase of gait

    Get PDF
    © 2018 Ade et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. The objective of the current study was to determine the test-retest reliability of heel-to-toe progression measures in the stance phase of gait using intraclass correlation coefficient (ICC) analysis. It has been proposed that heel-to-toe progression could be used as a functional measure of ankle muscle contracture/weakness in clinical populations. This was the first study to investigate the test-retest reliability of this measure. Eighteen healthy subjects walked over the GAITRite® mat three times at a comfortable speed on two sessions (≥ 48 hours apart). The reliability of the heel-to-toe progression measures; heel-contact time, mid-stance time and propulsive time were assessed. Also assessed were basic temporal-spatial parameters; velocity, cadence, stride length, step length, stride width, single and double leg support time. Reliability was determined using the ICC(3,1) model and, fixed and proportional biases, and measures of variability were assessed. Basic gait temporal-spatial parameters were not different between sessions (p > 0.05) and had excellent reliability (ICC(3,1) range: 0.871–0.953) indicating that subjects walked similarly between sessions. Measurement of heel-to-toe progression variables were not different between sessions (p > 0.05) and had excellent reliability (ICC(3,1) range: 0.845–0.926). However, these were less precise and more variable than the measurement of standard temporal-spatial gait variables. As the current study was performed on healthy populations, it represents the ‘best case’ scenario. The increased variability and reduced precision of heel-to-toe progression measurements should be considered if being used in clinical populations

    Advantages of the Ilizarov external fixation in the management of intra-articular fractures of the distal tibia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Treatment of distal tibial intra-articular fractures is challenging due to the difficulties in achieving anatomical reduction of the articular surface and the instability which may occur due to ligamentous and soft tissue injury. The purpose of this study is to present an algorithm in the application of external fixation in the management of intra-articular fractures of the distal tibia either from axial compression or from torsional forces.</p> <p>Materials and methods</p> <p>Thirty two patients with intra-articular fractures of the distal tibia have been studied. Based on the mechanism of injury they were divided into two groups. Group I includes 17 fractures due to axial compression and group II 15 fractures due to torsional force. An Ilizarov external fixation was used in 15 patients (11 of group I and 4 of group II). In 17 cases (6 of group I and 11 of group II) a unilateral hinged external fixator was used. In 7 out of 17 fractures of group I an additional fixation of the fibula was performed.</p> <p>Results</p> <p>All fractures were healed. The mean time of removal of the external fixator was 11 weeks for group I and 10 weeks for group II. In group I, 5 patients had radiological osteoarthritic lesions (grade III and IV) but only 2 were symptomatic. Delayed union occurred in 3 patients of group I with fixed fibula. Other complications included one patient of group II with subluxation of the ankle joint after removal of the hinged external fixator, in 2 patients reduction found to be insufficient during the postoperative follow up and were revised and 6 patients had a residual pain. The range of ankle joint motion was larger in group II.</p> <p>Conclusion</p> <p>Intra-articular fractures of the distal tibia due to axial compression are usually complicated with cartilaginous problems and are requiring anatomical reduction of the articular surface. Fractures due to torsional forces are complicated with ankle instability and reduction should be augmented with ligament repair, in order to restore normal movement of talus against the mortise. Both Ilizarov and hinged external fixators are unable to restore ligamentous stability. External fixation is recommended only for fractures of the ankle joint caused by axial compression because it is biomechanically superior and has a lower complication rate.</p
    • …
    corecore